

Terra Drone Europe

GNSS and Aerial Drone Surveys

TerraDrone Europe

15 Employees

14 Drones

7500+ Flights

24 Countries

250+ Employees

210+ Drones

50K+

Flights

69

Countries

14K+ Km² Mapped

Case Study: Aerial Survey & Inspection of 250+ locations

250 + onshore oil and Gas Locations in the Netherlands

- Fast and cost effective method for the survey of NAM Locations
- Creation of a 3D models to check terrain height changes
- Updating of as build drawings
- Inspections of flares

When

October 2013 - January 2016

NAM

Location

- Mainly North East of the Netherlands
- 250 + Locations

Objectives

- Deliver data for updating NAM As Build Drawings
- Create Imagery to limit site visits
- Creation of 3D models

Deliverables

- 3D Terrain and Surface Models
- Ortho rectified aerial imagery
- 360 aerial panoramas
- **Point Clouds**

Case Study: 3D Survey of a Shell offshore platform in Trinidad

3D As-Build survey of an offshore platform

- Built reliable 3D as-built dataset from scratch.
- Platform top side with photogrammetry using a UAV
- Quick method of creating a 3D model of the outside of the installation
- Photogrammetry was the only highly accurate method available
- Clashes between rig and platform were identified in the clash detection

When

- August 2017
- 2 working days on the platform

Location

- Dolphin platform, Trinidad and Tobago
- 2 Days on Installation

Objectives

Accurate as-built point cloud

Deliverables

- 3D Point Cloud
- Textured Mesh
- Top View aerial orthophoto mosaic
- 5 x 360 degree aerial panorama
- Results of quality control measurements

Why and where we use GNSS?

- Execution of automated flightpaths
- Measurement of ground control points for photogrammetry
- Measurement of verification points (LiDAR and Photogrammetry)
- Establishing base station position
- Computing exact position of where images are taken
- Replacement of IMU in LiDAR measurements

Automated Flight Paths (Horizontal – Survey and mapping)

Automated Flight Paths (Vertical – Inspections)

Ground Control Points

Introducing AeroPoints

AeroPoints are the world's first smart Ground Control Points.

Purpose-built for **drone surveying**, each AeroPoint includes a solar panel, battery, GPS and WiFi inside a fully-sealed, rugged, lightweight shell.

Specifications

Dimensions	544mm (W) x 544mm (L) x 32mm (H)		
Weight	1.55kg		
Power supply:	5000 mAh 3.2 V (16 Wh) LiFePO4 battery with solar charging (Newly purchased AeroPoints come fully charged)		
Storage:	4GB Flash		
Wireless connectivity:	2.4GHz WiFi (802.11 b/g/n)		
Operating temperature:	0°C/32°F (min); 40°C/104°F (max)		

Verification Points and Quality COntrol

FIELD OPERATIONS

LOGSHEET - BENCHMARK

PROJECT No: Q067 LOCATION: Mussulo Pensinsula DATE:

02/06/2014 1 of 1

BENCHMARK NAME SURVEYOR: REMARKS:

Mussulo Base

Station establed usi Hotel, Luanda as Bas

Benchmark description

PAGE:

Nail (Meetpunt) in the centre of the courtyard behind (North) the reception of Roca Das Mangueiros.

Coordinates p	rojection	Coordinates e	Coordinates ellipsoid	
X: 2956	85.22	Latitude:	08 °53 '20.01685" S	
Y: 9017	152.46	Longitude:	13 °08 '20.92140" E	
Z: 1.50		Height:	16.982	
Projection:	UTM 33S (15E) on Clarke 1880	Ellipsoid:	WGS'84	
Datum:	Camacupa (Clarke 1880 RGS)			

Vertical reference is Camacupa (MSL), Height transformations from WGS'84 to Camacupa were done via EGM2008 model

Checked (Skeye BV): {SIGNATURE} 17/12/2013 Approved (client): {SIGNATURE}

Reach UAV RTK kit

\$1242.00

Upgrade GPS in your drone with centimeter-accurate Reach UAV RTK kit. Reach M+ receives corrections from Reach RS+ using LoRa radio and outputs precise coordinates to the autopilot. This kit can also be used in other applications, where moving receiver needs to be compact.

Kit includes

- Reach RS+
- Reach M+
- Tallysman multi-GNSS antenna
- Reach M+ LoRa radio
- Carry case
- 2x Radio antenna
- Adapter for survey pole
- 2x USB cable
- USB-OTG cable
- JST-GH 6-pin to jumper pin cable
- JST-GH 5-pin to jumper pin cable

GNSS and Aerial Drone Surveys

Dual \$10000

One **\$200**

Item	X m	Υm	Z m
Box1	0.019	-0.054	0.021
Box2	-0.021	-0.067	0.020
Вох3	0.046	-0.043	0.014
Box4	0.030	-0.030	0.017
Box5	0.046	-0.079	-0.008
SD	0.025	0.017	0.011

TerraDrone